3x^2+125x+1=0

Simple and best practice solution for 3x^2+125x+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+125x+1=0 equation:


Simplifying
3x2 + 125x + 1 = 0

Reorder the terms:
1 + 125x + 3x2 = 0

Solving
1 + 125x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
0.3333333333 + 41.66666667x + x2 = 0

Move the constant term to the right:

Add '-0.3333333333' to each side of the equation.
0.3333333333 + 41.66666667x + -0.3333333333 + x2 = 0 + -0.3333333333

Reorder the terms:
0.3333333333 + -0.3333333333 + 41.66666667x + x2 = 0 + -0.3333333333

Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000
0.0000000000 + 41.66666667x + x2 = 0 + -0.3333333333
41.66666667x + x2 = 0 + -0.3333333333

Combine like terms: 0 + -0.3333333333 = -0.3333333333
41.66666667x + x2 = -0.3333333333

The x term is 41.66666667x.  Take half its coefficient (20.83333334).
Square it (434.0277781) and add it to both sides.

Add '434.0277781' to each side of the equation.
41.66666667x + 434.0277781 + x2 = -0.3333333333 + 434.0277781

Reorder the terms:
434.0277781 + 41.66666667x + x2 = -0.3333333333 + 434.0277781

Combine like terms: -0.3333333333 + 434.0277781 = 433.6944447667
434.0277781 + 41.66666667x + x2 = 433.6944447667

Factor a perfect square on the left side:
(x + 20.83333334)(x + 20.83333334) = 433.6944447667

Calculate the square root of the right side: 20.825331804

Break this problem into two subproblems by setting 
(x + 20.83333334) equal to 20.825331804 and -20.825331804.

Subproblem 1

x + 20.83333334 = 20.825331804 Simplifying x + 20.83333334 = 20.825331804 Reorder the terms: 20.83333334 + x = 20.825331804 Solving 20.83333334 + x = 20.825331804 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20.83333334' to each side of the equation. 20.83333334 + -20.83333334 + x = 20.825331804 + -20.83333334 Combine like terms: 20.83333334 + -20.83333334 = 0.00000000 0.00000000 + x = 20.825331804 + -20.83333334 x = 20.825331804 + -20.83333334 Combine like terms: 20.825331804 + -20.83333334 = -0.008001536 x = -0.008001536 Simplifying x = -0.008001536

Subproblem 2

x + 20.83333334 = -20.825331804 Simplifying x + 20.83333334 = -20.825331804 Reorder the terms: 20.83333334 + x = -20.825331804 Solving 20.83333334 + x = -20.825331804 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20.83333334' to each side of the equation. 20.83333334 + -20.83333334 + x = -20.825331804 + -20.83333334 Combine like terms: 20.83333334 + -20.83333334 = 0.00000000 0.00000000 + x = -20.825331804 + -20.83333334 x = -20.825331804 + -20.83333334 Combine like terms: -20.825331804 + -20.83333334 = -41.658665144 x = -41.658665144 Simplifying x = -41.658665144

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.008001536, -41.658665144}

See similar equations:

| Cos(x)=0.479 | | 3x^4+125x+1=0 | | x^2+144-32=0 | | 6/(y-3)=2/7 | | ln(x-5)+ln(2x+1)=ln(x^2+12x+11) | | sin37=10/x | | 3f+2(f+20)+7=97 | | 5x^2+40x-135=0 | | 11x-1=10x+6 | | x^6+2x^5+5x^4+8x^3+4x^2=0 | | 48w^2-75z^2= | | 9-7x=-35-2x | | (v)(v)=8v | | 0.8p+0.9=3.5-0.5p | | 0.9944/0.8 | | m+15=25 | | -5x+3x-4-2=5x-7x+1-7 | | 66+6(x-1)=90 | | (3r)r=8r | | 0.2p+0.9=3.5-0.5p | | 2.5x=6-1.5x | | 3-10=z/(-8) | | 66+6(x+1)=180 | | Tan(x)=0.593 | | 100-20-x=25 | | (3r)(3r)=8r | | 20/x-2=5 | | 20n=160 | | M-3/10=5/8 | | 0.5(2-a)=0.2(2a-6) | | 9x+3(800-x)=30 | | x/5=0.5 |

Equations solver categories